展示全部
基态通过连续多光子吸收到达能量较高的激发态。首先,发光中心处于基态G上的离子吸收一个能量为φ1的光子,跃迁至中间亚稳态E1能级,若光子的振动能量恰好与E1能级及更高激发态能级E2的能量间隔匹配,那么E1能级上的该离子通过吸收光子能量而跃迁至E2能级,从而形成双光子吸收,只要高能级上粒子数量够多,形成粒子数反转,那么就可以实现较高频率的激光发射,出现上转换发光。b 能量传递过程ETU能量传递是指通过非辐射过程将两个能量相近的激发态离子A、B耦合,其中A把能量转移给B回到基态,B接受能量而跃迁到更高的能态,从而使B能够从更高的能级发射。c 光子雪崩过程PA光子雪崩过程是激发态吸收和能量传递过程相结 ...
的散射。由于多光子吸收,同时能够减小背景噪声。这两种效果都会导致这些显微镜的穿透深度增加。基于荧光指示剂的钙成像提供了一种监测动作电位的光学方法,并被系统的用于补充微电极记录,测量体内的神经元活动。这种方法为重建小型模式生物体整个大脑中的神经元群的活动开辟了道路。钙成像技术结合双光子显微镜使得在体内测量深层神经元群体的活动成为可能。随着荧光显微镜技术的迅速发展,纯相位液晶空间光调制器在体钙成像技术的国产成人在线观看免费网站也得到了蓬勃发展。图2. 小鼠肠切片上的双光子激发显微镜图片。 红色:肌动蛋白。 绿色:细胞核。 蓝色:杯状细胞粘液。 通过钛-蓝宝石激光器在波长780 nm处激发获得三、LCoS-SLM在双光 ...
这通常是由于多光子吸收,增加了组织穿透。4.高脉冲重复率,10 - 100MHz量级,较大限度地提高采集速度,同时较小化像素停留时间。5.光功率大于每支100mw,用于补偿传输路程中的损耗,同时达到生物样品允许的较大平均功率水平,即700nm时10 - 20mw, 1000nm时可达100mw。上述特征的组合使得CRS显微镜在技术上比其他非线性显微镜技术要求更高,如双光子激发荧光和二次谐波产生(SHG)显微镜,需要一个单一的激发光束。早期大多数CARS显微镜使用了两个独立的电子同步皮秒Ti:sapphire振荡器,导致系统非常庞大和复杂。这很快就被目前单频CRS显微镜中的“金标准”所取代,该标 ...
材料时,通过多光子吸收、隧穿电离、碰撞电离等过程将电子从价带激发到导带,产生局域化的自由等离子体。充分电离时,离子之间的碰撞,等离子体中的电子通过逆轫治辐射吸收激光能量后,电子将会被加热到极高温度,随后电子再通过电子声子耦合将能量传递给晶格,从而使等离子体温度升高。在多激光脉冲重复作用过程中,激光诱导形成的缺陷逐步积累,材料的光学特性逐渐发生改变。二、飞秒激光的可行性验证材料的光学特性改变,已在多种材料中得到验证。德国马克思-伯恩非线性光学和短脉冲光谱学研究所Ashkenasi等人发现钇理氟化物(YLF)和熔石英的表面烧蚀阈值在第1次脉冲激光辐射后会发生急剧下降;日本中部大学的Qi等人发现孵化 ...
材料、非线性多光子吸收等多种优异特性,使其在三维纳米制造中具有独特的优势,可以满足对具有复杂表面轮廓和纳米级表面粗糙度的微光学元件和立体系统的加工需求。飞秒激光直写,通光飞秒激光的双光子吸收效应在光敏材料中引发聚合效应在光敏材料中引发聚合反应,从而构建复杂的三维微纳结构,广泛国产成人在线观看免费网站于生物医学工程、光学器件、微电子等领域。如,人工微血管网络、毛细血管网络打印,实现复杂形貌分岔微管网络和仿生多孔微管加工等。微纳加工的高精度和精确度,可以在微米和纳米尺度上精确控制材料的形状和结构,这使得制造微小器件和结构成为可能,如集成电路中的晶体管或微型机械系统中的微型零件。微纳加工使得在微小芯片或器件上集成大量的 ...
或 投递简历至: hr@auniontech.com