展示全部
通常情况下该极限分辨率与光的波长(λ)、成像系统口径(D)和数值孔径(NA)等参数有关。瑞利判据为了获得更好的成像效果,科学家尝试了许许多多的方法:在光刻系统中使用越来越短的光波(如目前因特尔等芯片企业已开始使用极紫外光),扩大成像系统口径(如天文望远镜口径已达到10米以上),增加成像系统数值孔径(如显微成像系统使用浸油等方式获得更大的NA)等,但这些方法都未能摆脱理论极限的影响。“衍射极限”仿佛是一片笼罩在头顶的阴霾,成为了看似坚不可摧的障碍。为了能够打破这个枷锁和桎梏,实现超分辨成像,科学家们真是脑洞大开,展现出了无穷的智慧。让我们看看科学家们通过哪些方法打破桎梏:结构光照明显微(SIM) ...
/pixel极限分辨率FWHM 2.5cm-1可扩展光电流成像/TCSPC荧光寿命成像/电感耦合等离子体发射光谱模块电化学等原位实验定制化服务激发光光纤接口3.荧光寿命成像模块测量范围100ps-10us时间分辨率<50ps探测效率高达49%死时间<77ns激发光波长 266nm-1990nm脉宽6ns重复频率31.15KHZ-80MHZ4.光电流成像模块探针台位移精度1um(X/Y),10um(Z)探针台移动范围 13mm(X/Y).20mm(Z)探针溢泄电流 10fA标准选配源表 Keithley 2400, 其他源表可做适配5.电感耦合等离子体发射光谱模块6.激发光及信号光偏 ...
光栅的超光谱极限分辨率一般都在0.6-2nm这个水平,虽然在光谱分辨率极限上刻划光栅类型的超光谱设备有优势,但在相同的光谱分辨率下,体布拉格光栅的成像设备在通光量要比机械刻划光栅的成像设备高2-3倍。在体积和重量上,超光谱设备比高光谱设备还要大和重,相应的价格也会高不少,由于成像原理的使得超光谱成像时间一般都会比较长,并且仪器防震性一般,超光谱设备一般都是在实验室环境来进行使用。您可以通过我们的官方网站了解更多的国产欧美在线信息,或直接来电咨询4006-888-532。 ...
校正恢复衍射极限分辨率用于斑马鱼幼苗在体体积成像通过贝塞尔聚焦扫描在2 Hz的体积速率下以及无AO和有AO的情况下对体积(128×100×60 μm3,从Z=190µm到Z=250µm below pia)中GCaMP6s+树突和树突棘的自发钙瞬变进行成像。清醒小鼠在体视觉皮层神经元基底树突棘中视觉诱发谷氨酸信号(iGluSnFR-A184S)的体积成像。通过贝塞尔聚焦扫描在无AO和有AO(128×128×60μm3,从Z=120μm到Z=180µm below pia)的情况对比。视觉刺激:伪随机序列中的12个全场漂移光栅(0° 至330°,增量为30°)。对每个刺激重复20次试验,视频为试 ...
景:超越衍射极限分辨率的光学成像技术推动了细胞内研究和单分子水平化学反应研究的发展。超分辨率受激发射损耗显微镜可以实现具有超高时空精度的三维成像。对于单分子检测和定位技术,如随机光学重建显微镜或光激活(photo-actived)定位显微镜,可光开关探针(photo-switchable probes)的位置定义为衍射极限点的中心位置。多次重复成像过程,每一次对不同的随机激活荧光团成像,可以实现纳米级的重建分辨率。然而,对样品透明性的要求,使得这些超分辨显微镜技术不可能用于被强散射介质(如生物组织、磨砂玻璃、粗糙墙角等)掩埋的物体。这些介质对光的吸收不强烈,但是扰乱了光路,产生像噪声一样的散斑 ...
),实现衍射极限分辨率图像重建。(2)提出数字自适应光学像差校正方法,应对组织成像中存在光学像差的问题。利用扫描光场显微镜不同角度测量之间的差异估计像差,然后通过数字平移角度图像校正像差。相比传统的自适应光学,不需要波前传感器或空间光调制器。原理解析:(1)利用小尺寸微透镜的衍射效应,借鉴叠层成像的原理,通过二维振镜周期性的扫描像平面,以牺牲时间分辨率为代价,同时获得高的空间分辨率和角度分辨率。如图1A和C所示。(2)如图1B和C,不同分割孔径上的线性相位调制对应角度分量的空间平移,使得不仅可以从角度测量之间的不一致估计空间非均匀像差,也可以通过数字平移角度图像来校正像差。这一过程称为数字自适 ...
用SPAD512S在3D成像中的国产成人在线观看免费网站在从空间成像到生物医学显微镜、安全、工业检查和文化遗产等众多领域,对快速、高分辨率和低噪声3D成像的要求非常高。在这种情况下,传统的全光成像代表了3D成像领域较有前景的技术之一,因为其较高的时间分辨率:3D成像是在30M像素分辨率下每秒7帧的单次拍摄中实现的,对于1M像素分辨率为每秒180帧;无多个传感器,近场需要耗时的扫描或干涉技术。然而常规全光成像导致分辨率损失,这通常是不可接受的。我们打破这种限制的策略包括将一个全新的和基础性的采用上一代硬件和软件解决方案。基本思想是通过使用新型传感器来利用存储在光的相关性中的信息实现一项非常雄心勃勃的任务的测量协议: ...
现超光学衍射极限分辨率成像的示意图。PALM的成像方法只能观察基于细胞外源表达的蛋白质。图1.PALM超分辨率显微成像系统原理及示意图PALM超分辨系统系统部分组成及光路结构:(1)倒置荧光显微镜:可以用于激光扫描共焦显微成像或者单分子PALM显微成像。(2)半导体激光:405nm激光器作为激活光,561nm激光器作为激发光,激光器波长的选择是要和使用的光活化蛋白的特性有关,用于激发荧光的激光器波长一般包括488、561、594、635nm。激光器功率一般在50-200mW。为了光路调节的方便,一般要求激光器输出光斑质量要好。(3)自由空间或光纤多波长耦合器:自由空间耦合器可以使得更高功率的激 ...
或 投递简历至: hr@auniontech.com